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This paper considers the calculation of the conformation of a molecule by the unusual 
means of proposing the matrix D of all interatomic distances subject to a priori energetic 
and geometric constraints, and then calculating the corresponding atomic coordinates. 
The necessary and sufEcient conditions on D from distance geometry are cited. Results are 
given for trials of numerical methods for carrying out such conformational calculations on 
cyclohexane and trypsin inhibitor. 

1. INTRODUCTION 

The problem of calculating the conformation of a molecule, particularly a large 
molecule such as a protein, has turned out to be surprisingly difficult. One of the most 
common methods (see for instance [l]) has been to place the atoms in some simple 
starting positions which satisfy a priori geometric constraints, such as fixed bond 
angles and bond lengths, and then alter the initial conformation by small shifts 
of atomic coordinates such that the geometric constraints always remain satisfied. 
The process continues until some energy-like function of all pairwise interatomic 
distances is minimal. Although the energy function may have a simple form with 
respect to the distance dij between any two atoms i andj, it is in general a very compli- 
cated function of the torsional angles, the natural conformational variables when bond 
lengths and angles are to be held fixed. The situation rapidly worsens when there are 
additional geometric constraints, for example, maintaining ring closure in cyclic 
molecules. 

The approach taken in this paper is to reverse the order of calculation: first choose 
interatomic distances leading to a favorable energy, and then alter these distances 
such that the geometric constraints are fulfilled. A similar line of attack has been 
taken earlier by Tinoco ei al. [2], where the formation of double-stranded segments 
in t-RNA molecules of known sequence was calculated using fairly simple geometric 
and energetic constraints on a qualitative distance matrix. The result, however, was 
a prediction of pairings of various parts of the chain with other parts, and not a 
prediction of the three-dimensional structure of the molecule, as we propose to under- 
take. In general, we proceed by first bounding all distances from above and below 
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by using the a priori geometric constraints. These bounds are then made more 
stringent by applying certain geometric theorems. Finally, we add energetic con- 
siderations consistent with the bounds to arrive at a set of interatomic distances, 
which are then converted into atomic coordinates. 

Section 2 considers the more elementary properties of the matrix D of interatomic 
distances dij, and how certain entries can be fixed and all others bounded from 
below. In Section 3 methods are given for computing an upper bound on the dij , 
and we cite the theorem for insuring that the proposed D matrix corresponds to a 
three-dimensional structure. In the fourth section numerical methods are discussed 
for converting a proposed distance matrix into atomic coordinates. The fifth section 
is a demonstration of the power of the approach on cyclohexane, a highly constrained 
molecule. Section 6 is concerned with the applicability of the distance matrix method, 
especially for large molecules. 

2. BASIC PROPERTIES OF D 

If one is to propose a distance matrix D of distances dij between n points (atoms, 
for our purposes), then D must have certain obvious properties regardless of how 
distances are calculated and how many spatial dimensions are allowed: 

(1) D is a symmetric R x n matrix: di, = dji . 

(2) Diagonal elements are all zero: dii = 0. 

(3) All off-diagonal elements are strictly greater than zero: dij I=- 0, i # j 
(otherwise some points i and j would be identical and a smaller order D would be 
appropriate). 

Since D is symmetric, it is sufficient to refer to only the upper triangle in all that 
follows. It has been observed [3] that the local structure is specified by entries close 
to the diagonal of D, while the long range or global structure is given by elements far 
from the diagonal. Thus the di,i+l are the bond lengths, and these together with the 
di,i+, specify the bond angles, for a simple chain of atoms numbered sequentially 
along the chain. Similarly the di.i+3 correspond to the dihedral angles about rotatable 
bonds. Any desired ring closures are indicated by fixing dij at some small value, 
where i and j are the beginning and ending atoms of the loop. We see that the incor- 
poration of any desired local geometric constraints, such as fixed bond lengths or 
cross linking, can be immediately incorporated into the proposed distance 
matrix. 

It is also easy to calculate a matrix S of lower bounds on the distances. The sii 
are either equal to those corresponding fixed dij as explained above or are otherwise 
equal to the sum of the van der Waals radii of the atoms i and j. In the case of a 
polymer, this corresponds to a self-avoiding chain; for a self-intersecting chain, the 
far off-diagonal sij would be zero. 
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3. PROPERTIES OF D FROM DISTANCE GEOMETRY 

It is possible to propose a distance matrix D satisfying all the conditions of the 
previous section, and yet not have it correspond to a realizable conformation. As 
a simple example, observe that there is no two-dimensional arrangement of four 
points corresponding to 

/o 1 1 l\ 
1 0 1 1 

D= 110 1’ t 1 1 1 I 0 

The matrix is that of the corners of a tetrahedron, requiring three dimensions. 
Analogous problems arise when trying to embed an n-tuple of points in ordinary 
three-dimensional Euclidean space, E, . The necessary and sufficient conditions for 
embedding n points in E, for any given r, are given in a theorem due to Blumenthal 
[4]. We cite it here specialized to three dimensions, with appropriate changes in 
nomenclature. 

THEOREM (Blumenthal). A necessary and suficient condition that a semimetric 
(n + I)-tuple may be irreducibry congruently embeddable in ES (3 < n) is that an 
ordering of the points exists so that (i) sgn d( l,..., k + I) = (-l)“+’ fir all k = 1 ,..., 
m < 3, and (ii) for any other points u and v, m + 1 < u, v < n + 1, then 
A&..., m + 1, u) = A(1 ,..., m + 1, v) = A(1 ,..., m + 1, u, v) = 0. Here A(1 ,..., k), 
etc. is the Cayley-Menger determinant of the distances dij between the k points 

(2) 

COROLLARY 1. Part (i) is true for k = 1 as long as d,2, > 0, as it must. 

COROLLARY 2. Part (i) for k = 2 and m > 2 is equivalent to saying the n + 1 
points are not all collinear and the distances between the first three points satisfy the 
triangle inequality 

42 + 43 3 43 (3) 

or any permutation of the subscripts 1, 2, and 3. 



DISTANCE GEOMETRY 99 

Proof. Squaring Eq. (3) twice, one obtains 

but the expression in (4) is exactly the result of evaluating d&2, 3). Equality holds 
in (3) and (4) only if the three points are collinear. 

COROLLARY 3. Part (i) for k = m = 3 is equivalent to the n + 1 points being 
not all coplanar and the distances between the first four points satisfying what might be 
called the “quadrangle inequality.” Denote the various squared distances by lower case 
unsubscripted letters thus: 

0 a c d 1 
aObe1 

d(l,2,3,4)= c b 0 f 1 . 
defO1 
1 1 1 1 0 

(5) 

Note that d = d& . Then referring to Fig. 1, the quadrangle inequality says that 
d must lie between dmin (when the points are in the planar cis configuration (as 
illustrated) with respect to rotation about the 2-3 bond) and d,,, (when in the planar 
trans configuration), assuming all other distances a, b, c, e, and A to be fixed. The 
proof of this corollary is rather lengthy but straightforward, so it will be found in 
the Appendix. Even then the proof is restricted to the simpler case where a = b = ,f, 
corresponding to equal “bond lengths,” or the “freely jointed chain,” in polymer 
chemistry terminology. 

COROLLARY 4. Part (ii) of the theorem is satisfied tf the bordered matrix 
D(l,..., n + 1) of squared distances corresponding to A(l,..., n + 1) has rank m + 2. 
In particular, for n + 1 > 4 points not all coplanar located in Ej rank of D must 
be 5. 

FIG. 1. Four numbered points with mutual squared distances denoted a, c, e and d corresponding 
to (5) when a = 6 = f. The arrangement shown is planar cis with respect to rotation about the 2-3 
bond. See the Appendix for the use of distances x, y, s, and t. 
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Proof. The rank of a matrix is the order of its largest nonzero minor. If the rank 
of D is m + 2, then the points can be numbered so that for the first m + 1 of them, 
A(I,..., m + 1) f 0, and A(l,..., m + 1, U) = A(1 ,..., m + I, v) L= d(I ,..., 
m + 1, U, 2~) = 0, since all minors of order higher than n? + 2 must be zero. (Note 
that the border adds an extra row and column.) 

These corollaries are useful in both gaining some insight into the implications of 
Blumenthal’s theorem and numerically applying it. The triangle inequality of 
Corollary 2 is especially useful as an easy way to establish an upper bound on the 
distance matrix, because it obviously must hold for all triplets of points, not just the 
first three. The algorithm to construct an upper bound distance matrix D,,, is simply 
to initially set the entries equal to some a priori fixed values (as in the case of bond 
lengths, say), or otherwise to very large numbers; then for every ordered choice of 
three points, if (3) does not hold, set dr3 to d,, + & ; iterate the previous step until 
no alterations can be made for any element of Dm, . 

As an example of the exhaustive use of the triangle inequality, consider the distances 
between residues 5, 14, 30, 38, 51, and 55 in the small protein, bovine pancreatic 
trypsin inhibitor (BPTI). From chemical studies it is known that not only is residue i 
connected to residue i + 1 for i = I,..., 58, but also that there are cross links between 
5-55, 14-38, and 30-51. The former type of links are given unit length and then the 
latter type are known to be twice as long. Initially our distance information for these 
residues may be summarized in Table I. Applying the triangle inequality exhaustively 
yields the distances shown in Table II, a drastic reduction in uncertainty. For com- 
parison, the true distances are given in Table IV. 

The application of the quadrangle inequality of Corollary 3 is not so straight- 
forward. Clearly the condition must hold for any quartet of points, but if not, the 
offending distance cannot be unambiguously identified since, in Fig. I, any one of the 
six distances could be taken to be bounded by the values of the other five. One 
approach has been to start with the D max resulting from the triangle inequality and 
reduce its elements further, but as little as possible, so that A(1, 2, 3, 4) > 0 for 
all (unordered) quartets of points. This is done by (i) selecting the quartet with the 

TABLE I 

Maximal Distances between BPTI Residues Known from 
Chemical Studies. 1 unit ~3.8 A 

Residue 5 14 30 38 51 55 

5 0 9 25 33 46 2 
14 0 16 2 37 41 
30 0 8 2 25 
38 0 13 17 
51 0 4 
55 0 
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TABLE II 

Maximal Distances between BPTI Residues after 
Application of the Triangle Inequality 

Residue 5 14 30 38 51 55 

5 0 9 8 11 6 2 
14 0 10 2 12 11 
30 0 8 2 6 
38 0 IO 13 
51 0 4 
55 0 

TABLE III 

Maximal Distances between BPTI Residues after Application of Quadrangle Inequality 

Residue 5 14 30 38 51 55 

5 0 9.00 6.03 10.12 4.82 2.00 
14 0 7.41 2.00 8.59 10.18 
30 0 7.23 2.00 5.71 
38 0 8.78 11.02 
51 0 4.00 
55 0 

TABLE IV 

Experimentally Determined Distances between BPTI Residues by X-ray Crystallography [7]. 
1 unit = 3.8 A 

Residue 5 14 30 38 51 55 

5 0 5.79 2.62 4.66 2.37 1.54 
14 0 5.86 1.64 5.82 6.66 
30 0 5.22 1.68 2.24 
38 0 4.81 5.52 
51 0 1.54 
55 0 
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algebraically smallest d; (ii) reducing (or holding fixed) the mutual distances according 
to the gradient of d until d > 0 by moving along the “steepest descent” path in 
small steps, (iii) repeating step (i) until d > 0 for all quartets. Typically the d’s 
are initially all negative and several orders of magnitude larger in absolute value 
than their final values. 

Using the above procedure on our example of maximal BPTI interresidue distances, 
we arrive at the distances given in Table III. Whereas the triangle inequality step 
between Tables I and II was quite an inexpensive calculation for even a 58 x 58 
matrix, the exhaustive application of the quadrangle inequality is much more time 
consuming, and has not been tested on systems of more than eight points, where the 
reduction of some elements can be as much as 20 %. It is important to note that the 
changes in distances are nontrivial, and that the resemblance to Table IV, the correct 
distances, is improved. The quadrangle inequality is a significant geometric constraint 
above and beyond the triangle inequality. 

The higher order conditions of part (ii) of the theorem involve evaluation of 
(n - 4) + (n - 4)(n - 5)/2 = (nz - 7n + 12)/2 determinants if there are n points 
altogether. Corollary 4 permits part (ii) to be checked by a single determination of 
rank for the (n + 1) x (n + 1) bordered matrix of squared distances. This is con- 
veiniently done by Gaussian elimination with full pivoting and then noting how many 
nonzero rows result. Thus it is easy to check whether a given distance matrix is 
embeddable in E3 . However, it is difficult to alter a given matrix until the points are 
embeddable. Although there are only 3n - 6 degrees of freedom to be adjusted 
for IZ > 3 points (namely the x, y, and z coordinates, less rigid translation and 
rotation) for a fully flexible chain, there are n(n - 1)/2 variable distances in the full 
distance matrix, and there are (n - 4)(n - 3)/2 entries in the triangularized bordered 
distance matrix which must become zero. Therefore, one must solve (n - 4)(n - 3)/2 
simultaneous nonlinear equations in n(n - 1)/2 unknowns, which is quite difficult 
for large n. The better algorithms for solving systems of nonlinear equations generate 
an approximation to the Jacobian matrix involving [n(n - 1)/212 storage locations and 
considerable computer time. As soon as n > 10 the approach becomes infeasible. 
Nevertheless, we have successfully performed test calculations using Brown’s method 
[5] for nonlinear equations to embed five points in Ez . Convergence was extremely 
rapid, but the program could not be scaled up to large numbers of points for the 
reasons just mentioned. Other equation solving algorithms which do not compute 
the Jacobian matrix, such as Schechter’s SOR method [6] did not give good con- 
vergence. 

4. CALCULATION OF COORDINATES 

The ultimate check on such conformational calculations via distance matrix, 
and often the most useable final form, is a set of Cartesian coordinates. Assuming for 
the moment that we have successfully proposed an energetically favorable distance 
matrix fulfilling all the above conditions, it remains to show how to convert the 
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distances into coordinates vi = (xi , yi , zi), i = l,..., n. The straightforward analytical 
approach is surprisingly unstable 

VI = (0, 0, 01, 

v2 = M2 > 0, O), 

v dh - did + d,“, 
4 

= 
( 242 ’ 

d,“4 - & + d,“, - 82 + 2&h - xs), fd2 _ x4z 
2Y3 

14 - Y4Y2), 

vi = 
i 
d:i - d;i 4 d;2 d$ - dii - dt2 + d;, + 2xi(d12 - x3) 

2dl2 * 2Y3 
, +[d$ - xi2 - y,“,“‘), 

. 
for i = 5,..., n 

where the sign of zi is chosen so that 1 d4( - 11 vi - v, 11 1 is minimal. 
Note that we could have chosen z, to be negative, thus reversing the handedness of 

the whole resulting figure. The distance matrix of a collection of points is unique only 
up to a rigid translation, rotation, or mirror reflection. The inherent numerical insta- 
bility of (6) is readily apparent, for example when d13 = d23 > d12 , and small errors 
in the d’s result in large errors in xs . 

If the given distances satisfy all the conditions of the previous section to a good 
approximation, then we have developed stable iterative methods of coordinate 
calculation. 

(i) Initially place the IZ points at some arbitrary positions. 

(ii) For i = 2,..., n; let F = c:r: (d&,ei, - dfjca1c)2. Minimize F with respect 
to the x, y, and z coordinates of point i. diimatrix is the given distance, and diicLlc is 
that calculated from the coordinates set so far. 

(iii) Finally refine the coordinates by minimizing CL, Cjn_l+l (dfjmabix - d,2i,,,,)2 
with respect to all coordinates. 

In our trials we calculated D from the positions of the C” atoms in the small protein, 
pancreatic trypsin inhibitor, as determined by x-ray crystallography [7]. Here n = 58, 
but convergence was rapid using the Fletcher-Reeves conjugate gradient minimization 
algorithm [8], with coordinates being altered by only a few percent or less in step (iii). 
Less than ten seconds execution time was required on the CDC 7600 computer. We 
experienced no difficulty with converging on spurious local minima where the function 
value was greater than zero. 

Deriving coordinates from a rough approximation to a “correct” distance matrix 
is a more poorly defined process, but our trials on trypsin inhibitor have been success- 
ful. Convergence is slower and weighting of terms in step (iii) is desirable [9]. 

581/24/1-8 
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5. CYCLOHEXANE 

The distance geometry approach is especially well suited to conformational cal- 
culations on molecules with many strong geometric constraints. As a simple example, 
we have taken the six carbon atoms of cyclohexane, assuming fixed C,-C,,, bond 
lengths of 1.54 A and fixed (tetrahedral) Ci-,-Ci-Ci,l bond angles of 109.47” (and 
therefore C,_,-Col distances of 2.51 A). The result is only three possibly variable 
distances: a = d14 , b = dz5 , and c = dS6 . The conformations of this molecule with 
the above assumptions have certainly been investigated theoretically before. However, 
it is instructive to compare the ease of our approach to, say, the 95 equations in the 
paper by Go and Scheraga [lo], who solved the same problem in terms of torsional 
angles. 

Table V shows the basic distance matrix, D for cyclohexane. A reasonable lower 
bound matrix S, taking the van der Waals’ radii of the carbon atoms into account, 
would be just Table V with a = b =uz = 2A. From the triangle inequality, D,, 

TABLE V 

The Distance Matrix (A) for the Six Carbon Atoms of Cyclohexane with 
Fixed Bond Lengths and Bond Angles 

0 1.54 2.51 a 2.51 1.54 
0 1.54 2.51 b 2.51 

0 1.54 2.51 c 
0 1.54 2.51 

0 1.54 
0 

would have a = b = c = 4.06A. Applying the quadrangle inequality to the sets 
of atoms I-2-3-4, 2-345, and 34-5-6 gives minimal values of a = b = c = 2.57 
and maximal distances of a = b = c = 3.87 A. Embedding in E3 eliminates two of 
the degrees of freedom, leaving us with one independently variable distance (when 
the molecule has C, symmetry) [lo]. Having chosen a for instance, b and c were deter- 
mined using Corollary 4. The proposed values of a, b, and c were inserted into the full, 
bordered matrix B of squared distances; this was converted to upper triangular form 
T by Gaussian elimination with full pivoting (for greatest numerical stability); 
the measure of the deviation of B from rank 5 was taken to be f(a, b, c): 

where the b’s are elements of B, and the t’s are elements of T. The double sum in 
Eq. (7) varies inversely with the largest element of B, so the first term in brackets is 
intended as a rough normalization off for comparing the results of widely differing 
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values of u, b, and c. The refining of D beyond the quadrangle inequality consisted 
of choosing a and then varying b and c until f R+ 0 and f was minimal. In this way, 
we were able to calculate a = b = c = 2.949 as our best approximation (f = 0.0002) 
to the “chair” conformation, which would be favored if uniform energetic repulsions 
dominated. If, on the other hand, atoms 1 and 4 were particularly attractive, their 
minimal distance could be a = 2.567, and if b = c = 2.949, this is actually realizable 
(f = 0.0007) and corresponds to the “boat” form. It was impossible to achieve the 
quadrangle inequality maximal distance of 3.87, the closest approach being 2.949 
for b and c in the boat conformation. 

D for the boat conformation was directly converted to Cartesian coordinates, 
using Eq. (6), resulting in Table VT. The propagation of numerical errors in Eq. (6) 
did not present any difficulties in this case. 

TABLE VI 

Cartesian Coordinates (in A) for the Six Cyclohexane Carbon 
Atoms in the Boat Conformation 

(a = 2.567, b = c = 2.949) 

x Y z 

0 0 0 
1.54 0 0 
2.05 1.45 0 
0.86 2.42 0 
0 2.18 1.26 

-0.51 0.72 1.26 

6. DISCUSSION 

The intent underlying this investigation has been to perform conformational 
calculations with the interparticle distances as the primary variables, so that one could 
take advantage of the direct relation between the distances and the pairwise energies, 
which together with the geometric constraints, presumably determine the con- 
formation. In contrast to most physical situations, where the lower dimensionality 
versions of a problem are easier, the opposite is true here. In (n - 1)-dimensional 
Euclidean space, one could place n or fewer particles with almost any desired inter- 
particle distances, such as at the distance of minimal energy for each interaction. 
Since we are restricted to only three dimensions, the purely geometric constraints 
become very important for n 3 4, as we have seen in Section 3. 

On the other hand, because a priori fixed distances can be so readily incorporated 
in this approach, calculations may be relatively tractable on highly constrained 
molecules (either physically having limited flexibility or having experimental evidence 
to fix or reduce the range of many distances). 
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Our main interest lies in the calculation of conformation of globular proteins, 
which typically consist of thousands of atoms grouped into a few hundred amino 
acid residues. Manipulation of the distance matrix for all atoms at once is quite 
infeasible, but in this approach the detail of the investigation can be conveniently 
varied. For instance, one can begin by determining the distance matrix for a single 
representative atom from each residue, using a crude residue-residue energy-like 
potential. Then rows and columns for all atoms of a pair of close residues can be 
added, and the local conformation could be worked out in detail using atom-atom 
energy functions. At the present stage of development, we are still concerned with 
ways of proposing residue-level distance matrices which satisfy the powerful geometric 
constraints outlined in this paper. 

7. APPENDIX 

Proof of Corollary 3. Evaluating (5), one obtains 

A( 1, 2, 3, 4) = 2{ -a2f - b2d - c2e - d2b - e2c - f 2a + bde + bee + cef + cde 

+ aef + ace + abf + abd + acf + bdf + bed + adf - bef 

- ade - abc - cdf). (Al) 

We will consider the special case where a = b =f; the general case is merely more 
laborious. Then (Al) becomes: 

A(1, 2, 3,4; a = b = f) = 2{ -a3 + 2a2d - ce? - d2a - e2c + 3ace + cde). (A2) 

Now referring to Fig. 1, if we take all distances but d1j2 to be fixed, then the 
“quadrangle inequality” says that d1j2 can vary between its lower bound dz& in 
the planar cis conformation, as illustrated, and its upper bound dg& in the planar 
tram conformation by rotating about the 2-3 “bond.” We now calculate dmax and 
dmin using Fig. 1 and the Pythagorean theorem 

and 
x+y=a, (A3) 

c = y + (ali + W,X~/*)~, (A4) 
where 

WC = +1 c > 2a, 

= -1 c < 2a. 
(A5) 

Eliminating y and solving for x, 

xl,2 _ I 4 - a I 
al 12 

and similarly 

$112 _ 142 - al. 
ali2 

cw 

647) 



DISTANCE GEOMETRY 107 

Hence, from (A5), (A6), and (A7) 

d min = (d/Z + Wpl/Z + w,Gy + (y’i2 - tl12)2 

= (1/4a)(c + e - 2a)2 + (yll2 -- P/2)2. 
648) 

Similarly, we obtain 

d m&x = (1/4u)(c + e - 2a)2 + (yll2 + P/2)2. (A9) 

Combining (A4) and its equivalent involving e and t with Eqs. (A6) and (A7) we find 

y = c - cykl and t = e - e2/4u (AlO) 

which upon substitution into (A8) and (A9) yields 

d mIn = a + (ce/2u) - 2[(c - c2/4u)(e - e2/4u)]li2, 

d = a + (ce/2u) + 2[(c - c2/4u)(e - e2/4u)]““. 
(Al 1) 

max 

From the quadrangle inequality we know that 

--2a(d - &in)(d - &ax) > 0, 6412) 

but substituting Eq. (Al 1) and simplifying the expression results in the right-hand side 
of (A2) being greater than or equal to zero. Clearly equality holds only if the points 
are coplanar. 
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